<menuitem id="zzbd5"></menuitem>
<p id="zzbd5"></p>

    <p id="zzbd5"></p>

    <pre id="zzbd5"><ruby id="zzbd5"><b id="zzbd5"></b></ruby></pre>
      <pre id="zzbd5"></pre>
      <p id="zzbd5"></p>

        <output id="zzbd5"><dfn id="zzbd5"><th id="zzbd5"></th></dfn></output>
        <pre id="zzbd5"><mark id="zzbd5"><progress id="zzbd5"></progress></mark></pre>
        <p id="zzbd5"><cite id="zzbd5"><progress id="zzbd5"></progress></cite></p>

        <p id="zzbd5"></p>

          <pre id="zzbd5"></pre>
          <ruby id="zzbd5"><mark id="zzbd5"></mark></ruby>
            <track id="zzbd5"><ruby id="zzbd5"></ruby></track>

              <ruby id="zzbd5"></ruby>
              <ruby id="zzbd5"><mark id="zzbd5"><progress id="zzbd5"></progress></mark></ruby>

               腦功能基因組學教育部重點實驗室
              Key Laboratory of Brain Functional Genomics, Ministry of Education

              您的位置: 首頁  開放交流  學術講座

              "From Cognitive networks to seizures: stimulus evoked dynamics in coupled cortical working memory networks"Mark bordner 博士(美國MIND研究所)-2013.6.17

              發布日期: 2016-08-30  瀏覽次數: 74  作者:

              "From Cognitive networks to seizures: stimulus evoked dynamics in coupled cortical working memory networks"Mark bordner 博士(美國MIND研究所)-2013.6.17

              時間:2013年6月17日 10:00

              地點:認知神經科學研究所二樓會議室

              報告題目:From Cognitive networks to seizures: stimulus evoked dynamics in coupled cortical working memory networks

              報告人:Mark bordner 博士 美國MIND研究所

               

              報告人簡介:Mark bordner, Ph.d本科畢業于美國匹茲堡大學,加州大學洛杉磯分校獲得博士學位。曾在加州大學洛杉磯分校精神病學和生物行為科學系,加州大學埃文分校物理系任職,現擔任美國MIND研究所所長以及匹茲堡大學數學系和約翰霍普金斯神經外科系兼職教授職務。研究方向:包括神經網絡的數學模型、工作記憶數學模型的建立,以及研究癲癇等神經疾病的機制。

               

              報告簡介:Recurrent networks of cortico-cortical connections have been identified as the substrate of working memory activity and patterned sequenced representation as needed in cognitive function.  We initially determine how working memory behavior arises first in such local cortical area networks, and the emergence of possible seizure state with changes in critical network parameters.   We then determine how the normal working memory dynamics and seizure dynamics are modulated and spread through the development and examination of distributed networks corresponding to multiple brain areas.   The effect of excitatory stimulation to activate working memory behavior through selective persistent activation of populations is examined in the models, and the conditions and transition mechanisms through which that selective activation breaks down producing spreading paroxysmal activity and seizure state as occur in the human brain is characterized.  Because seizures may arise as attractors in a multi-state system, pathological networks may possibly be returned to baseline or normal states through particular forms of stimulation.   We examine when this may occur and the forms of stimulation necessary for the range of different seizure dynamics, and relate this to methods of neurostimulation which recently have received considerable attention.

              (若分享按鈕出現問題,請先登錄校園網關)
                <menuitem id="zzbd5"></menuitem>
              <p id="zzbd5"></p>

                <p id="zzbd5"></p>

                <pre id="zzbd5"><ruby id="zzbd5"><b id="zzbd5"></b></ruby></pre>
                  <pre id="zzbd5"></pre>
                  <p id="zzbd5"></p>

                    <output id="zzbd5"><dfn id="zzbd5"><th id="zzbd5"></th></dfn></output>
                    <pre id="zzbd5"><mark id="zzbd5"><progress id="zzbd5"></progress></mark></pre>
                    <p id="zzbd5"><cite id="zzbd5"><progress id="zzbd5"></progress></cite></p>

                    <p id="zzbd5"></p>

                      <pre id="zzbd5"></pre>
                      <ruby id="zzbd5"><mark id="zzbd5"></mark></ruby>
                        <track id="zzbd5"><ruby id="zzbd5"></ruby></track>

                          <ruby id="zzbd5"></ruby>
                          <ruby id="zzbd5"><mark id="zzbd5"><progress id="zzbd5"></progress></mark></ruby>
                          一级一片一_级一片一